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Summary

 

Acrylamide is produced in starchy foods that are baked, roasted or fried at high 

temperatures. Concerns about the potential health issues associated with the dietary intake 

of this reactive compound led us to reduce the accumulation of asparagine, one of its main 

precursors, in the tubers of potato (

 

Solanum tuberosum

 

). This metabolic change was 

accomplished by silencing two asparagine synthetase genes through ‘all-native DNA’ 

transformation. Glasshouse-grown tubers of the transformed intragenic plants contained 

up to 20-fold reduced levels of free asparagine. This metabolic change coincided with 

a small increase in the formation of glutamine and did not affect tuber shape or yield. 

Heat-processed products derived from the low-asparagine tubers were also 

indistinguishable from their untransformed counterparts in terms of sensory characteristics. 

However, both French fries and potato chips accumulated as little as 5% of the acrylamide 

present in wild-type controls. Given the important role of processed potato products in the 

modern Western diet, a replacement of current varieties with intragenic potatoes could 

 

reduce the average daily intake of acrylamide by almost one-third.
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Introduction

 

Asparagine plays an apparently important role in the

assimilation and storage of nitrogen (Lam 

 

et al

 

., 2003), and

is particularly abundant in the products of wheat (

 

Triticum

aestivum

 

) (Benedito 

 

et al

 

., 1989), coffee (

 

Coffea arabica

 

 and

 

C. canephora

 

) (Mazzafera, 1999) and potato (Talley 

 

et al

 

.,

1970). On heat processing, the amide amino acid reacts with

reducing sugars to produce acrylamide (Mottram 

 

et al

 

., 2002).

Average daily intake levels of this Maillard reaction product

are estimated to be 0.3–0.7 

 

μ

 

g acrylamide/kg/day (Dybing

 

et al

 

., 2005). Ingested acrylamide is readily absorbed and

metabolized, in part, by a cytochrome P450 to produce

mercapturic acid and glycidamide (Boettcher 

 

et al

 

., 2005).

Although mercapturic acid is excreted via the urine, both the

remaining acrylamide and its reactive metabolite bind to

various proteins as well as DNA (Barber 

 

et al

 

., 2007; Martins

 

et al

 

., 2007). High levels of adduct formation have been

linked to animal health issues, including cumulative nerve

terminal damage (Johnson 

 

et al

 

., 1986; Friedman 

 

et al

 

., 1995).

In humans, oral intake levels believed to be without an

appreciable risk of deleterious effects are currently estimated

to be 3.0 

 

μ

 

g acrylamide/day (http://www.epa.gov/iris). This

level of dietary intake is exceeded in small subsets of the

population, particularly in young children and adolescents

(Dybing 

 

et al

 

., 2005). In their preliminary JECFA/64/SC report

(http://www.who.int/ipcs/food/jecfa/summaries/summary_

report_64_final.pdf), the Joint Food and Agriculture Organ-

ization/World Health Organization (FAO/WHO) Expert

Committee on Food Additives and Contaminants has

therefore recommended reducing the acrylamide content of

processed starchy foods.

Recently developed methods to limit acrylamide formation

require changes in grower or processor practices, which may

limit their broad application. For instance, the beneficial effect

of sulphur fertilization on lowering the acrylamide potential

of potato and wheat (Elmore 

 

et al

 

., 2007) is offset by increased

farmer input costs and sulphur contamination issues. Further-

more, the partial decreases in acrylamide concentration that

can be achieved by modifying processing variables, such as

the time and temperature of heating (Rydberg 

 

et al

 

., 2005;

Amrein 

 

et al

 

., 2006), yield products that have lost some of

their original colour, flavor and/or texture, and may therefore

be less appealing to consumers. A third approach incubates

raw materials with either asparagine-metabolizing enzymes

or amino acids that compete with asparagine in the Maillard

reaction (Elder 

 

et al

 

., 2006; Howie 

 

et al

 

., 2006). Such treat-

ments have been shown to be only partially effective for

http://www.who.int/ipcs/food/jecfa/summaries/summary_report_64_final.pdf 
http://www.who.int/ipcs/food/jecfa/summaries/summary_report_64_final.pdf 
http://www.epa.gov/iris
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some raw food ingredients, require high concentrations of

the additive, and are too difficult and costly to apply broadly.

A preferred route to the reduction of acrylamide would be to

shift to crops that are naturally poor in acrylamide precursors.

However, there are currently no such varieties available that

also display all the additional input, processing and quality

traits demanded by the processing industry (Vivanti 

 

et al

 

.,

2006). Given the complexity of wheat, coffee and potato

breeding, efforts to develop such new processing varieties

will require 15 years or more.

A faster route to decrease the acrylamide potential of food

crops was established 2 years ago through genetic engineer-

ing. Simultaneous silencing of two tuber-expressed genes in

starch degradation, which encode water dikinase R1 and

amyloplast-targeted phosphorylase-L, led to a decrease in the

accumulation of glucose and fructose by approximately two-

fold (Rommens 

 

et al

 

., 2006). Reduced browning of processed

products from these modified tubers correlated with an

approximately two- to threefold decrease in acrylamide

levels. In this article, an alternative approach for the production

of low-acrylamide French fries and potato chips is described

that does not alter their sensory characteristics. This new

method is based on the tuber-specific silencing of two genes

in asparagine biosynthesis, and reduces the concentration of

free asparagine by up to 95%.

 

Results

 

Silencing of asparagine synthase genes limits 

asparagine biosynthesis in potato tubers

 

Asparagine synthetase (As) catalyses the ATP-dependent

conversion of aspartate into asparagine. Two cDNAs for

this key enzyme in asparagine biosynthesis, designated as

 

StAs1

 

 and 

 

StAs2

 

, were amplified from a tuber poly(A)

 

+

 

mRNA-derived library of the potato variety Ranger Russet.

The 1.6-kb open reading frames share 71% sequence

identity and encode products with a typical ~190-amino-acid

N-terminal glutaminase domain (cd00712), which is involved

in the hydrolysis of glutamine to produce glutamate and

ammonia (Marchler-Bauer 

 

et al

 

., 2007) (Figure 1). The

predicted secondary structures of both of these proteins and

their functional orthologues resemble that of the crystallized

AsB of 

 

Escherichia coli

 

 (Larsen 

 

et al

 

., 1999) (Figure 1). StAs1

shares most homology with the proteins encoded by the

dark-inducible 

 

HaAs1

 

 from sunflower (

 

Helianthus annuus

 

)

(86%) and the 

 

AtAs1

 

 gene from 

 

Arabidopsis

 

 (83%). In

contrast, StAs2 is more closely related to the product of the

weakly expressed and light-inducible 

 

AtAs2

 

 gene (86%)

(Figure 1).

In an attempt to limit the accumulation of asparagine in

potato tubers, a silencing construct was designed that

simultaneously targets the expression of 

 

StAs1

 

 and 

 

StAs2

 

(Figure 2a). The two genes are quite divergent at the DNA

level, with short (approximately 5 bp) stretches of homology

interrupted by mismatches. Therefore, 0.4-kb fragments

from both 

 

StAs1

 

 and 

 

StAs2

 

 were fused to create a DNA

segment, and two copies of this segment were inserted as an

inverted repeat between two convergently orientated pro-

moters. It was our primary intent to reduce the transcription

of the 

 

StAs1

 

 and

 

 StAs2

 

 genes in tubers, whilst limiting the

extent of gene silencing in the foliage where the gene

products play important roles in both photorespiration (Ta

 

et al

 

., 1985) and ammonium detoxification (Wong 

 

et al

 

.,

2004). For this reason, promoters were employed that were

at least 100-fold more active in tubers than in leaves: the

Figure 1 Phylogenetic relationship and structure of asparagine synthetase (As) proteins from a number of different species: At, Arabidopsis thaliana; 
Ec, Escherichia coli; Ha, Helianthus annuus; St, Solanum tuberosum. Black boxes, α helices; grey boxes, β sheets.
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granule-bound starch synthase (Gbss) and a short (2.2-kb)

version of the potato ADP-glucose pyrophosphorylase (Agp)

(Visser 

 

et al

 

., 1991; Muller-Rober 

 

et al

 

., 1994; C. Richael,

unpubl. data). The resulting silencing construct was posi-

tioned within a potato-derived transfer (P-) DNA to create the

binary vector pSIM1256.

An 

 

Agrobacterium

 

 LBA4404 strain containing pSIM1256

was used for marker-free and all-native DNA transformation

of the ‘French fry’ variety Ranger Russet (Richael 

 

et al

 

., 2008).

Fifteen shoots with a P-DNA

 

+

 

/backbone

 

–

 

 genotype were

rooted, confirmed by DNA gel blot analysis to contain at least

one P-DNA integration event (Figure 2b, and data not

shown) and propagated 

 

in vitro

 

 for the production of intra-

genic lines. Three plants of each of the 15 transformed lines

were grown in the glasshouse for 3 months. Both the yield

and size of harvested tubers were similar to those of

untransformed controls (Figure 3a,b). The specific gravity,

which is a reliable indicator of starch content, was also

unaffected by the genetic modification (data not shown). An

association between the presence of the silencing construct

and two- to fivefold decreased transcript levels for the 

 

StAs2

 

gene in tubers of 12 of the 15 lines was subsequently demon-

strated by reverse transcriptase polymerase chain reaction

(RT-PCR) (Figure 3c). RNA gel blot analysis, although less

sensitive, confirmed this result (Figure 3d), and also indicated

that silencing of the 

 

StAs2

 

 gene was fully correlated

with suppressed expression of the 

 

StAs1

 

 gene (Figure 3e).

The effective establishment of 

 

StAs1/2

 

 gene silencing in

intragenic lines was mainly attributed to the presence of

fragments from the two targeted genes in the silencing

construct. In addition, it is possible that the partial homology

between the 

 

StAs1

 

 gene fragment and the resident 

 

StAs2

 

gene, and vice versa, was sufficient for some cross-silencing

(Jackson 

 

et al

 

., 2003).

Tubers from all the intragenic lines were analysed by high-

performance liquid chromatography (HPLC) to determine the

effect of 

 

StAs1/2

 

 gene silencing on the accumulation of

asparagine. As shown in Figure 3f, the content of this amide

amino acid was up to 20-fold lower in intragenic tubers than

in the tubers transformed with an ‘empty’ vector control.

Interestingly, tubers of line 1256-45 contained higher As2

transcript levels but lower concentrations of asparagine than

tubers of, for instance, line 1256-26. This finding suggests

that the various intragenic lines differ in their content of

reducing sugars and/or other compounds that influence the

potential for acrylamide formation (Rydberg 

 

et al

 

., 2005).

Further studies on four randomly chosen lines, 1256-6, 1256-

26, 1256-27 and 1256-45, demonstrated that reduced

asparagine levels coincided with a 1.5–2.5-fold increase in

the accumulation of the alternative amide amino acid

glutamine, which resembles asparagine in that it contains

two amino groups (Figure 3g). All other tested amino acids

remained at wild-type levels (Figure 3g), and the protein

content was also unaltered (Figure 3h). However, the total

amount of tested free amino acids in tubers from line 1256-

26, which contained the smallest amount of asparagine,

was 16% less than that of controls and other intragenic lines,

indicating that an almost complete impairment of asparagine

formation may have a rippling negative effect on the bio-

synthesis of other amino acids.

Figure 2 Plant transformation with a silencing construct targeting the potato asparagine synthetase genes (StAs1 and StAs2) in tubers. (a) Diagram of 
vector pSIM1256. St01, potato-derived border-like element resembling the T-DNA border; pAGP, promoter of the potato Agpase gene; 1, StAs1 gene 
fragment; 2, StAs2 gene fragment; i, inverse complement; S, spacer; pGbss, promoter of the potato Gbss gene; ori, origin of replication; pUbi3, promoter 
of the potato Ubi3 gene; ipt, Agrobacterium ipt gene; tUbi3, terminator of the potato Ubi3 gene; npt III, kananycin resistance gene from E. coli. Plant-
derived sequences are shown in green; vector backbone sequences are shown in grey. (b) P-DNA copy number of nine intragenic lines, as determined 
with an StAs1/2-derived probe that also visualizes two endogenous fragments (grey arrows).
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Figure 3 Silencing of the potato asparagine synthetase genes (StAs1 and StAs2) decreases the accumulation of asparagine. (a) Tuber yield for 3-month-
old glasshouse-grown plants of 15 intragenic lines (grey bars) and untransformed controls (C) (black bar). 100% = 361 ± 60 g/plant. (b) Phenotype of 
typical tubers of line 1256-26. (c) Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for relative expression of StAs2 (top panel) 
and the internal actin gene control (middle panel), with RNA loading shown in the bottom panel. (d) StAs2 transcript levels determined by RNA gel blot 
analysis. The grey arrow shows the predicted position of the RNA. Weak band intensity in the control lane indicates low As2 gene expression levels in 
untransformed plants. Transcript levels were undetectable in tubers of most intragenic lines. (e) Hybridization of an RNA gel blot with an StAs1 gene-
derived probe. (f) Tuber asparagine levels. Significant differences from controls (P < 0.05) are indicated with an asterisk. FW, fresh weight. (g) Amino 
acid profiles for untransformed control tubers (black bars) and tubers from lines 1256-6 (lightest grey bar), 1256-26 (light grey bar), 1256-27 (grey bar) 
and 1256-45 (dark grey bar). (h) Total protein content. Data represent the mean of three experiments ± standard deviation.
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A second expression cassette that contained the 

 

StAs1/2

 

-

derived inverted repeat between two Gbss promoters was

also tested for its efficacy to reduce the accumulation of

asparagine in tubers. The vector carrying this alternative

version of the silencing cassette (pSIM1151) was used to

produce 12 transformed lines. HPLC analyses demonstrated

that tubers from most of the transformed lines contained

the same asparagine levels as wild-type controls (Figure 4).

Only three transformed lines produced tubers with less than

one-half the amount of asparagine that accumulated in

controls. This result confirms earlier studies, which indicated

that tuber-specific and convergent transcription-mediated

gene silencing is triggered more effectively by the combina-

tion of Gbss and Agp promoters than by two copies of the

Gbss promoter (Yan 

 

et al

 

., 2006). It can be concluded that

silencing of the 

 

StAs1

 

 and 

 

StAs2

 

 genes caused a dramatic

decrease in the accumulation of asparagine in tubers

without compromising the yield of glasshouse-grown

transgenic lines.

 

Reduced asparagine formation in tubers limits 

heat-induced acrylamide formation in French fries

 

Potatoes are generally stored at temperatures that limit cold-

induced sweetening (7–10 

 

°

 

C). For proof-of-concept experi-

ments designed to determine the effect of low asparagine

levels on acrylamide production, the storage temperatures

were decreased to 4 

 

°

 

C. After a 1-month incubation period,

tubers contained 8.8 ± 0.37 mg/g fresh weight (FW) of glu-

cose, which is 12-fold higher than the glucose levels in freshly

harvested tubers. Initially, the cold-stored tubers of eight

intragenic lines (1256-6, 1256-26, 1256-27, 1256-45, 1256-

83, 1256-90, 1256-96 and 1256-109) were blanched, cut,

par-fried and finish-fried for 2 min 45 s for the production of

lightly coloured French fries. HPLC analyses of these materials

demonstrated that the control product contained 126 ng g

 

−

 

1

 

of acrylamide, whereas the presence of this undesirable

Maillard reaction product was often below the detection

limit of 20 ng g

 

−

 

1

 

 in intragenic fries (data not shown). The

finish-frying time was therefore extended to 4 min, and

produced brown French fries for both untransformed

controls and intragenic tubers (Figure 5a). As expected,

the longer frying time resulted in the formation of more

acrylamide in controls (1097 ng g

 

−

 

1), and low but detectable

levels of this compound in intragenic fries (Figure 5b).

Importantly, fries from lines 1256-26 and 1256-45 contained

only approximately 5% of the acrylamide that accumulated

in controls. The correlation coefficient between tuber

asparagine levels and fry acrylamide levels was 0.9074, indi-

cating that asparagine plays an important role in acrylamide

formation.

The four intragenic lines 1256-27, 1256-83, 1256-90 and

1256-96 were evaluated by a team of professionally trained

food scientists for various aspects of texture (crispness,

mouthfeel, mealiness and texture variation) and taste

(caramel taste, fresh fried taste and aroma). These assess-

ments demonstrated that the above-described resemblance

in the visual appearance of intragenic and control fries

Figure 4 Asparagine levels of tubers from pSIM1151 lines. The results 
shown represent the average values of three measurements ± standard 
deviation for tubers of the untransformed control (C) (black bar) and 12 
transformed lines (grey bars). Significant differences from controls 
(P < 0.05) are indicated with an asterisk. FW, fresh weight.

Figure 5 Acrylamide levels in French fries. 
(a) Visual appearance of fries from an 
untransformed control (C) and intragenic line 
1256-27. (b) Acrylamide levels. Data are 
expressed as a percentage of the 
untransformed control value 
(1097 ± 258 ng g−1) and represent the mean 
of three measurements ± standard deviation. 
Asterisks indicate significant differences from 
controls (P < 0.05).
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coincided with a similar texture and taste (Table 1). Col-

lectively, our results demonstrated that a 3–18-fold decrease

in the asparagine content of potato tubers resulted in a

similar fold decrease in the amount of acrylamide accumu-

lated during heat processing. These changes did not affect

the tuber yield or French fry quality.

Production of low-acrylamide potato chips

The high surface-to-volume ratio of sliced tubers that are

used for chip production promotes the rapid formation of

acrylamide during heat processing (Matthäus et al., 2004).

Therefore, the glucose concentration of cold-stored tubers

was decreased (to 2.8 ± 0.12 mg/g FW) by incubation for

2 weeks at 15 °C. Potato chips obtained from reconditioned

control tubers contained 4318 ± 1138 ng g−1 of acrylamide

(Figure 6a,b), which is still approximately fourfold higher

than that for French fries from cold-stored tubers (Figure 5b).

Intragenic chips from lines 1256-27 and 1256-83 accumu-

lated much lower levels of acrylamide (861 and 1153 ng g−1,

respectively). However, these levels may still be sufficiently

high to pose potential health issues. Thus, the impairment of

asparagine biosynthesis is not always sufficient to guarantee

low levels of acrylamide formation.

In an effort to optimize the decrease in acrylamide, the

potato variety Atlantic, which contains much lower levels of

glucose and fructose than does Ranger Russet (Webb et al.,

1978), was transformed. Fifteen of 844 shoots regenerated

from infected explants were shown by PCR-based geno-

typing to contain the StAs1/2 gene silencing construct, whilst

lacking backbone DNA, indicating a frequency for marker-

free and backbone-free transformation of 1.8%. Plants of

three intragenic lines that displayed reduced StAs1 and StAs2

gene expression levels, designated as 1256A-3, 1256A-5 and

1256A-6, were confirmed to contain at least one P-DNA

insert (Figure 6c), and were grown in the glasshouse for tuber

production. Harvested tubers accumulated 7.1%–18.4% of

the asparagine that was produced in untransformed control

tubers (Figure 6d). These fresh tubers were subsequently

processed using standard procedures to produce potato

Table 1 Sensory evaluation of French fries prepared from both 
untransformed and intragenic Ranger Russet tubers stored for 
1 month at 4 °C prior to processing. Tests were performed by a panel 
of eight professionally trained experts, who sampled French fries at 
the optimum time of 3 min. Data denote the average marking of 
six assessments ± standard deviation on a nine-point scale 
(9, excellent; 1, poor)

Sensory 

characteristic Control 1256-27 1256-83 1256-90 1256-96

Texture Crispness 4.7 ± 0.5 4.8 ± 0.1 5.0 ± 0.1 4.5 ± 0.2 5.2 ± 0.1

Mouthfeel 6.3 ± 0.3 5.8 ± 0.1 5.8 ± 0.3 3.8 ± 0.5 6.2 ± 0.2

Mealiness 5.8 ± 0.3 6.2 ± 0.1 6.2 ± 0.2 5.2 ± 0.1 5.8 ± 0.2

Variation 6.4 ± 0.3 6.2 ± 0.1 6.3 ± 0.3 6.3 ± 0.1 6.5 ± 0.3

Taste Caramelized 6.6 ± 0.4 7.0 ± 0.0 6.3 ± 0.3 5.3 ± 0.4 5.8 ± 0.2

Fresh-fried 2.9 ± 0.2 3.3 ± 0.4 3.0 ± 0.0 3.3 ± 0.4 3.3 ± 0.4

Aroma 5.9 ± 0.7 6.0 ± 0.0 5.2 ± 0.2 5.3 ± 0.6 5.5 ± 0.4

Figure 6 Potato chips from low-asparagine tubers. (a) Example of chips from tubers of untransformed Ranger Russet controls (C) and line 1256-27. 
(b) Acrylamide levels in chips. Data for chips from intragenic lines (grey bars) are shown as a percentage of the levels in chips from the untransformed 
controls (4318 ± 1137 ng g−1) (black bar). (c) Copy number of intragenic Atlantic lines 1256A-3, 1256A-5 and 1256A-6, as visualized with a probe 
containing fragments of both the StAs1 and StAs2 genes. Grey arrows indicate the positions of two endogenous hybridizing DNA bands. (d) Asparagine 
levels in lines 1256A-3, 1256A-5 and 1256A-6 (grey bars) compared with controls (black bar). (e) Acrylamide levels in processed material from intragenic 
Atlantic lines (grey bars) and controls (black bar). 100% = 840 ± 90 ng g−1.
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chips. Figure 6e shows that control chips from Atlantic tubers

contained 840 ng g−1 of acrylamide, which is about fivefold

lower than the levels in chips from untransformed Ranger

Russet tubers. Acrylamide levels were much lower in the

processed material from intragenic lines, most notably line

1256A-5. This particular intragenic line contained only 8% of

the acrylamide that was present in chips from untransformed

Atlantic tubers (67 ng g−1), and may prove to be suitable for

commercial production if none of the original agronomic

characteristics of the Atlantic variety are lost as a con-

sequence of the transformation process.

Discussion

Simultaneous silencing of the StAs1 and StAs2 genes

decreases the accumulation of free asparagine in potato

tubers by up to 95%. Because asparagine plays an important

role in nitrogen assimilation and storage (Lam et al., 2003;

Lea et al., 2007), it was somewhat surprising that the

targeted metabolic change did not affect the yield or shape

of tubers from glasshouse-grown plants. To some extent,

the intragenic tubers adjusted to the impaired asparagine

biosynthesis by both accumulating more glutamine, which is

the precursor of asparagine and has only a slightly lower

nitrogen to carbon ratio, and increasing protein biosynthesis.

It is also possible that tubers increased the formation of γ-
aminobutyric acid, which contains about 11% of soluble

nitrogen (Thompson et al., 1953). A full analysis of the extent

to which intragenic tubers are capable of compensating for

their lost ability to assimilate and store nitrogen in the form

of asparagine will be carried out in future work. Regardless

of the outcome of these studies, it was found that the tuber-

specific silencing of the StAs1 and StAs2 genes did not affect

the tuber yield of glasshouse-grown plants. This finding is in

agreement with a previous study on transgenic potato plants

down-regulated for the amino acid symporter StAap1 (Koch

et al., 2003). Substantially decreased levels of free amino

acids in the tubers of these transgenic plants were not

associated with negative side-effects on leaf metabolism,

tuber yield or phenotype.

In contrast with the tuber-specific silencing strategy

employed in this work, it is predicted that strong constitutive

silencing of the two related As genes would compromise

plant growth and/or development. The proteins encoded by

these genes play an important role in recapturing ammonium

that is lost during photorespiration, a process that exceeds

primary nitrogen assimilation by 10-fold (Keys et al., 1978).

Although the enhanced assimilation of ammonium has been

shown to increase photosynthesis (Fuentes et al., 2001) and

accelerate growth (Oliveira et al., 2002), an impairment of

this process may result in the accumulation of high and

potentially toxic concentrations of ammonium (Gerendas

et al., 1997; Wong et al., 2004). It should be mentioned that

intragenic plants have not yet been exposed to the environ-

mental stresses that are typical in the field. Such stresses

include, for instance, drought, overwatering and infection, and

are all known to enhance the formation of asparagine (Lea

et al., 2007). The physiological significance of up-regulated

asparagine biosynthesis is not yet fully understood, but it is

possible that an inability to increase the concentrations of

asparagine in tubers would, directly or indirectly, enhance

stress sensitivity in the field.

Despite the efficacy of StAs1/2 gene silencing, intragenic

tubers still contained 5%–25% of the asparagine that

accumulated in untransformed potatoes. Some of this

amino acid may have been synthesized through either

rudimentary StAs1 and/or StAs2 activity or transamination

of 2-oxosuccinamic acid (Joy, 1988). A more substantial

proportion was probably produced in leaves for transport

through the phloem to the tubers (Fischer et al., 1998). Given

the similar phenotypes of intragenic plants and their untrans-

formed counterparts, it is unlikely that the silencing construct

has a strong effect on the biosynthesis of asparagine in

leaves. An additional argument for this hypothesis comes

from the poor foliar activity of the promoters of the silencing

construct (Visser et al., 1991; C. Richael, unpubl. data).

The significance of asparagine as an important determinant

of the acrylamide potential of tubers was not noted in earlier

studies evaluating the effect of genotype on acrylamide

levels (Williams, 2005; Viklund et al., 2008). This discrepancy

highlights the importance of other factors that influence the

formation of acrylamide. Such factors include, for instance,

glycine concentration (Bråthen et al., 2005), product matrix

(Claeys et al., 2005), tuber moisture (Amrein et al., 2006),

antioxidants (Zhang et al., 2007) and, most importantly,

reducing sugars. The role played by each of these factors

is variety dependent, which explains why asparagine

concentration alone is not always a reliable predictor for the

extent of acrylamide formation (Williams, 2005). Although

the pSIM1256 Ranger Russet lines provided a suitable source

of low-asparagine tubers for the production of French fries,

they still yielded potato chips that contained relatively high

levels of acrylamide. This result indicates that an impairment

of asparagine biosynthesis is often necessary, but not always

sufficient, to guarantee low levels of acrylamide formation

during heat processing. The large amounts of reducing

sugars that accumulate in cold-stored Ranger Russet tubers

may accentuate reactions with compounds that represent
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alternative acrylamide precursors, such as glutamine

(Mottram et al., 2002).

Our study demonstrated that low-asparagine Ranger

Russet tubers that were cold stored at 4 °C yielded potato

chips that were still relatively high in acrylamide. This finding

indicates that the dramatic reductions in asparagine levels

accomplished through As1/2 gene silencing are not always

sufficient to guarantee a low-acrylamide product. For chip

production, it will still be necessary to either store tubers

at higher temperatures (7–10 °C) or to apply typical ‘chip’

varieties, such as Atlantic. Alternatively, it may be possible to

retransform a low-asparagine Ranger Russet variety with

constructs for reduced cold-induced sweetening. Such

constructs could be designed to down-regulate the expression

of the genes involved in starch degradation (Rommens et al.,

2006) or to express the maize (Zea mays) Dof1 transcription

factor gene (Yanagisawa et al., 2004) or the potato metabolic

regulator SnRk1 (McKibbin et al., 2006).

The consumption of processed potato products contributes

to approximately one-third of the average dietary intake

of acrylamide (Boettcher et al., 2005). Thus, an eventual

replacement of existing potatoes by low-asparagine varieties

would lower the ingestion of acrylamide by approximately

30%. Even greater reductions could be accomplished by

applying the described methods to wheat and coffee. In

these cases, the As genes would have to be silenced in the

endosperm.

In conclusion, our work has demonstrated that the heat-

induced formation of acrylamide can be decreased by reduc-

ing the asparagine content in potato tubers. Preliminary data

have indicated that this modification does not alter the

normal agronomics of the crop. If supported by consumers,

all-native fry products with very low levels of acrylamide

could be offered as a new market choice within the next

5 years.

Experimental procedures

Database and statistical analyses

Gene expression levels were assessed by analysing expressed
sequence tag data stored at the Gene Index Database, maintained by the
Dana Farber Cancer Institute, Boston, MA, USA (www.danafarber.org).
Amino acid motifs associated with the functional activity of
enzymes were analysed by position-specific iterated and pattern-
hit initiated BLAST (Schäffer et al., 2001). Databases searched
using BLASTN and TBLASTS included those maintained by the
National Center for Biotechnology Information, Bethesda, MD, USA
(http://www.ncbi.nlm.nih.gov). The correlation coefficient between
two variables was calculated according to Pearson (Gayen, 1951).
Both the calculation of protein alignments and the visualization of

cladograms were based on CLUSTALW (with penalties for opening
and extending a gap set at 10.0 and 0.2, respectively). Protein
structures were predicted using the PHYRE protein threading program
version 2.0 (www.sbg.bio.ic.ac.uk/~phyre/). The t-test was used to
study whether the means of two groups were statistically significantly
different from each other.

Plasmid construction

The DNA segment used to produce a multigene silencing construct
contained 348-bp fragments of the StAs1 gene (coordinates 318–665
of GENBANK accession CK278037) and the StAs2 gene (coordinates
314–661 of GENBANK accession CK271149). The tuber-specific Gbss
promoter represents coordinates 1138–1823 of GENBANK accession
X83220. The Agp promoter is identical to coordinates 2183–4407 of
GENBANK accession X96771. The basic P-DNA vector used has been
described previously (Rommens et al., 2004).

Plant transformation, genotyping and DNA gel 

blot analysis

Stock plants were maintained in Magenta boxes containing 40 mL
half-strength M516 medium (PhytoTechnology, Shawnee Mission,
KS, USA) with 3% sucrose and 2 g/L gelrite. Plants were transformed
as described previously (Richael et al., 2008). Transformed plants
were genotyped for the presence or absence of P-DNA, T-DNA and
backbone DNA using a robust and reliable PCR method, explained
elsewhere (Xin et al., 2003). The P-DNA copy number of intragenic
lines was determined by isolating DNA using DNAzol reagent
(Invitrogen, Carlsbad, CA, USA), transferring EcoRI digests to posi-
tively charged membranes (Roche Applied Science, Indianapolis, IN,
USA) and hybridizing the membranes with a probe derived from the
0.8-kb DNA segment, which was employed to create the silencing
construct and carried fragments from both the StAs1 and StAs2
genes, using the non-radioactive digoxigenin system (Roche Applied
Science).

RNA analysis

RNA was isolated from tubers using an RNAeasy Plant Mini Kit
(No. 74904, Qiagen, Valencia, CA, USA), following the manufac-
turer’s recommendations. cDNA was synthesized from 0.5 μg of
total RNA in a 20-μL volume using an oligo dT primer and Super-
scriptII RT (Invitrogen) at 42 °C in 1 h. One microlitre of resulting
cDNA was used as template in the following PCR: 25-μL volume
containing 20 mM 2-amino-2-(hydroxymethyl)-1,3-propanediol
(Tris)-HCl (pH 8.4), 50 mM KCl, 1.5 mM MgCl2, 0.2 mM of each
deoxynucleoside triphosphate (dNTP), 0.2 μM of each primer and
1.5 U Taq DNA polymerase (Invitrogen). The cycling protocol was as
follows: 3 min at 95 °C, followed by 33 cycles of 20 s at 95 °C, 20 s
at 57 °C and 80 s at 72 °C, with a final step of 2 min at 72 °C. Nine
microlitres of the amplification products were analysed by electro-
phoresis and visualized by ethidium bromide on a 1% agarose gel.
Semi-quantitative PCR for the StAs2 gene was carried out with the
pair of intron-spanning primers 5′-GGGATGCCATTGGCATTACAC
and 5′-TGTACTGGCTCTGATACTGGTC, using Qiagen’s one-step
RT-PCR kit (catalogue number 210212), according to the manufac-
turer’s recommendations. Intron-spanning primers for the internal

http://www.ncbi.nlm.nih.gov
www.danafarber.org
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control actin gene were 5′-AGTGGTCGTACCACCGGTATTGTG
and 5′-ATGATCAGTGAGGTCACGACCTGC. Non-radioactive digo-
xigenin RNA gel blot hybridization was performed according to the
manufacturer’s recommendations (Roche Applied Science). A
labelled 1.1-kb probe for the StAs2 gene was derived from a
gene fragment amplified with the primer pair 5′-CTTGCTCAT-
CAACGATTGGCAATAG and 5′-AGGTCGGATCATTTTCCATTCTG.
The primers used to produce a 1.1-kb probe for the StAs1 gene
were 5′-GGTTGATGACTGATGTCCCCTTTG and 5′-TAGTTAGCTC-
CTTATTGTGAGCTC.

Tuber production, characterization and processing

Plants were grown for 3 months in 7.6 L pots in a glasshouse that
was controlled for temperature (18 °C minimum/27 °C maximum)
and light (16-h photoperiod with an intensity of approximately
1500 μmol/m2/s). The specific gravities of the harvested tubers were
determined by dividing the weight in air by the weight in water
(Kleinkopf et al., 1987). For French fry production, the tubers were
washed, blanched for 8 min at 74 °C, cut into shoestring strips,
dipped in a 1% sodium acid pyrophosphate solution at 71 °C, dried
at the same temperature, fried at 200 °C for 45 s and frozen for
20 min at –26 °C, shaking the tray two to three times in the first
6 min. The processed fries were then finish-fried at 168 °C for either
2 min 45 s (light colour) or 4 min (dark colour). Potato chips
were produced by slicing fresh tubers to 1.0-mm thickness using an
industrial slicer; after air drying, they were fried for 11 min at 170 °C.

Assays for glucose, amino acids and total protein 

content

A glucose oxidase/peroxidase reagent (Megazyme, Bray, Co. Wicklow,
Ireland) was used to determine the glucose levels of cold-stored
tubers. For amino acid analyses, tuber samples were extracted and
analysed using an automated amino acid analyser according to the
official methods of analysis of the Association of Official Analytical
Chemists (AOAC) (http://www.aoac.org/omarev1/982-30.pdf). The
total protein content was determined by grinding a transverse slice
of approximately 0.5 cm across the middle of the tuber in liquid
nitrogen with a mortar. A homogenate containing 250 mg of the
ground powder in 0.5 mL of extraction buffer [25 mM Tris-acetate
pH 8.5, 0.5 M NaCl, 5 mM phenylmethylsulphonylfluoride (PMSF)]
was centrifuged at 12 000 g for 10 min. The protein concentration
in the supernatant was then measured using the Bradford protein
assay kit (Bio-Rad, Hercules, CA, USA).

Assessment of fry colour and acrylamide levels

Colour was assessed using an E30-FP Agtron Process Analyser (Agtron,
Reno, NV, USA), whereby a lighter colour is reflected by a higher
number and values above 40 are generally considered to be accept-
able. French fries were ground to a fine powder in liquid nitrogen;
the powder was shipped on dry ice to Covance Laboratories
(Madison, WI, USA), where a combination of liquid chromatography
and mass spectrometry was used to detect acrylamide at concen-
trations as low as 20 p.p.b., according to a method developed by
the United States Food and Drug Administration (http://
www.cfsan.fda.gov/~dms/acrylami.html), adapted from an earlier
method (Schuster, 1988).
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